228 lines
6.1 KiB
Plaintext
228 lines
6.1 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
//int num_devices = 0; // ORG
|
||
|
int num_devices = 4; // DEBUG
|
||
|
|
||
|
/*
|
||
|
// ORIGINAL VERSION
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
int j = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
if (i >= M || j >= N)
|
||
|
return;
|
||
|
|
||
|
C[i * N + j] = 0;
|
||
|
for (int k = 0; k < K; ++k) {
|
||
|
C[i * N + j] += A[i * K + k] * B[k * N + j];
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
|
||
|
// 41490 GFLOPS: TS(64), WPT(8)
|
||
|
#define TS 64
|
||
|
#define WPT 8
|
||
|
|
||
|
// 35000 GFLOPS: TS(72), WPT(8)
|
||
|
//#define TS 72
|
||
|
//#define WPT 8
|
||
|
|
||
|
// 30490 GFLOPS: TS(64), WPT(16)
|
||
|
//#define TS 64
|
||
|
//#define WPT 16
|
||
|
|
||
|
// 30000 GFLOPS: TS(64), WPT(4)
|
||
|
//#define TS 64
|
||
|
//#define WPT 4
|
||
|
|
||
|
// 28000 GFLOPS: TS(72), WPT(16)
|
||
|
//#define TS 72
|
||
|
//#define WPT 16
|
||
|
|
||
|
// 17000 GFLOPS: TS(16), WPT(8)
|
||
|
//#define TS 16
|
||
|
//#define WPT 8
|
||
|
|
||
|
|
||
|
#define RTS TS/WPT
|
||
|
|
||
|
|
||
|
// VERSION: PARTITIONED FOR M
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
int bx = blockIdx.x;
|
||
|
int by = blockIdx.y;
|
||
|
int tx = threadIdx.x;
|
||
|
int ty = threadIdx.y;
|
||
|
int row = threadIdx.y;
|
||
|
int col = threadIdx.x;
|
||
|
//int global_row = (blockDim.y*WPT)*blockIdx.y + threadIdx.y;
|
||
|
//int global_col = (blockDim.x)*blockIdx.x + threadIdx.x;
|
||
|
int global_row = (blockDim.y*WPT)*by + ty;
|
||
|
int global_col = (blockDim.x)*bx + tx;
|
||
|
|
||
|
__shared__ float Asub[TS][TS];
|
||
|
__shared__ float Bsub[TS][TS];
|
||
|
|
||
|
float intermediate_val[WPT];
|
||
|
|
||
|
// printf("DEBUG: (bx,by) = (%d, %d), (tx,ty)=(%d, %d), (bsx,bsy)=(%d,%d), (global_row, global_col)= (%d,%d) \n",bx, by, tx,ty, blockDim.x, blockDim.y, global_row, global_col);
|
||
|
|
||
|
for(int w=0; w < WPT; w++) {
|
||
|
intermediate_val[w] = 0.0f;
|
||
|
}
|
||
|
|
||
|
const int num_tiles = (K % TS) ? K/TS +1 : K/TS; // aligned for TS(tile size)
|
||
|
for(int t=0; t < num_tiles; t++) {
|
||
|
for(int w=0; w < WPT; w++) {
|
||
|
const int t_row = TS * t + row;
|
||
|
const int t_col = TS * t + col;
|
||
|
|
||
|
// for zero padding for aligned area
|
||
|
if( (global_row+w*RTS >= M) || (t_col >= K) ) Asub[row+w*RTS][col] = 0.0f;
|
||
|
else Asub[row+w*RTS][col] = A[(global_row + w*RTS) * K + t_col];
|
||
|
|
||
|
// for zero padding for aligned area
|
||
|
if( (t_row + w*RTS >= K) || (global_col >= N) ) Bsub[row+w*RTS][col] = 0.0f;
|
||
|
else Bsub[row+w*RTS][col] = B[(t_row + w*RTS) * N + global_col];
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
for(int k=0; k<TS; k++) {
|
||
|
for(int w=0; w < WPT; w++) {
|
||
|
intermediate_val[w] += Asub[row+w*RTS][k] * Bsub[k][col];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
}
|
||
|
|
||
|
for(int w=0; w < WPT; w++) {
|
||
|
if( (global_row+w*RTS >= M) || (global_col >= N) ) continue;
|
||
|
else C[(global_row + w*RTS)*N + global_col] = intermediate_val[w];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
//static int Mi[MAX_NUM_GPU];
|
||
|
|
||
|
static int Msz;
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
int bsx, bsy;
|
||
|
bsx = TS;
|
||
|
bsy = TS/WPT;
|
||
|
dim3 blockDim(bsx, bsy, 1);
|
||
|
|
||
|
Msz = (Mend[i] - Mbegin[i]);
|
||
|
|
||
|
int gx, gy;
|
||
|
gx = N;
|
||
|
gy = (Msz+WPT-1)/WPT;
|
||
|
|
||
|
// aligned for block
|
||
|
gx = (gx + bsx -1)/bsx;
|
||
|
gy = (gy + bsy -1)/bsy;
|
||
|
|
||
|
dim3 gridDim(gx, gy, 1);
|
||
|
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Msz, N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|