chundoong-lab-ta/SamsungDS22/submissions/final/scsc.lee/A/convolution.cpp

146 lines
4.5 KiB
C++

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include <omp.h>
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
void my_alloc_tensor(float **t, int D0, int D1, int D2, int D3) {
*t = (float *) aligned_alloc(32, sizeof(float) * D0 * D1 * D2 * D3);
if (*t == NULL) {
printf("Failed to allocate memory for matrix.\n");
exit(0);
}
}
int min(int a, int b) { return a < b ? a : b; }
void compute_conv(int is, int ie) {
// int tNums = omp_get_num_threads();
//#pragma omp parallel for num_threads(tNums)
#pragma omp parallel for collapse(3) num_threads(100) schedule(dynamic)
for (int n = is; n < ie; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
}
}
void compute_conv_org() {
// int tNums = omp_get_num_threads();
//#pragma omp parallel for num_threads(tNums)
#pragma omp parallel for collapse(3) num_threads(100) schedule(dynamic)
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
}
}
void convolution(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
input = _input;
output = _output;
filter = _filter;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_world_size > 1){
// Calculate is and ie redundantly on every processes
int is[mpi_world_size], ie[mpi_world_size];
for (int i = 0; i < mpi_world_size; i++) {
is[i] = N / mpi_world_size * i;
ie[i] = N / mpi_world_size * (i + 1);
}
ie[mpi_world_size - 1] = N;
if (mpi_rank != 0) {
my_alloc_tensor(&input, N, C, H, W);
my_alloc_tensor(&output, N, K, OH, OW);
my_alloc_tensor(&filter, K, C, R, S);
}
// Scatter A
if (mpi_rank == 0) {
for (int i = 1; i < mpi_world_size; i++) {
MPI_Send(input+is[i]*C*H*W, (ie[i]-is[i])*C*H*W, MPI_FLOAT, i, 0, MPI_COMM_WORLD);
}
}
else {
MPI_Recv(input+is[mpi_rank]*C*H*W, (ie[mpi_rank]-is[mpi_rank])*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr);
}
// Broadcast B
MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD);
compute_conv(is[mpi_rank], ie[mpi_rank]);
// Gather C
if (mpi_rank == 0) {
for (int i = 1; i < mpi_world_size; i++) {
MPI_Recv(output+is[i]*K*OH*OW, (ie[i]-is[i])*K*OH*OW, MPI_FLOAT, i, 0, MPI_COMM_WORLD, nullptr);
}
}
else {
MPI_Send(output+is[mpi_rank]*K*OH*OW, (ie[mpi_rank]-is[mpi_rank])*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
}
}
else {
compute_conv_org();
}
}
void convolution_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
}
void convolution_final(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
}