chundoong-lab-ta/SamsungDS22/submissions/final/dk2003.lim/tmp-B/convolution.cu

349 lines
10 KiB
Plaintext

#include "convolution.h"
#include "util.h"
#include <mpi.h>
#include <stdio.h>
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
static float *input, *output, *filter;
static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU];
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
//int num_devices = 0; // ORG
static int num_devices = 1; // DEBUG
static int Nsizei[MAX_NUM_GPU]; // Number of Nsize for each GPU[i]
static int Nodesize[2]; // Number of size for each node
/*
// Array of device (GPU) pointers
static float *input[MAX_NUM_GPU];
static float *filter[MAX_NUM_GPU];
static float *output[MAX_NUM_GPU];
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
*/
// 4279 GFLOPS (TS = 4)
// 4887 GFLOPS (TS = 8)
// 3303 GFLOPS (TS = 16)
//#define TS 4
#define TS 8
//#define TS 16
__global__ void conv_kernel(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
const int globalRow = blockDim.x * blockIdx.x + threadIdx.x;
const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
int OH, OW;
OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
int n, k, w;
w=globalCol;
n=w / (_K * OW);
w = w - n * (_K * OW);
k = w / OW;
w = w - k * OW;
int col = w;
int row = globalRow;
if( (globalRow >= OH) || (globalCol >= _N* _K * OW)) return;
int start_row = row * _stride - _pad;
int start_col = col * _stride - _pad;
float o = 0.f;
for (int c = 0; c < _C; ++c) {
for (int r = 0; r < _R; ++r) {
for (int s = 0; s < _S; ++s) {
//int h = oh * stride - pad + r * dilation;
//int w = ow * stride - pad + s * dilation;
int h = start_row + r * _dilation;
int w = start_col + s * _dilation;
if (h < 0 || h >= _H || w < 0 || w >= _W) continue;
float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w];
float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s];
o += i * f;
} // for s
} // for r
} // for c
//_output[n * _K * OH * OW + k * OH * OW + oh * OW + ow] = o;
_output[n * _K * OH * OW + k * OH * OW + row * OW + col] = o;
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int offset = 0;
MPI_Request request;
MPI_Status status;
input = _input;
output = _output;
filter = _filter;
// printf("DEBUG: mpi_world_size = %d\n", mpi_world_size);
/*
// for two processors
if(mpi_world_size == 2) Nodesize[1] = _N / 2;
else Nodesize[1] = 0;
Nodesize[0] = _N - Nodesize[1];
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
*/
// For two nodes, separate the jobs
if(mpi_rank == 0 && mpi_world_size == 2 && Nodesize[1] != 0) { // for the first node
MPI_Isend(&input[Nodesize[0]*C*H*W], Nodesize[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
if(Nodesize[mpi_rank] < MAX_NUM_GPU) { // smaller number of size than MAX_NUM_GPU
num_devices = Nodesize[mpi_rank];
}
}
else if(mpi_rank == 1 && Nodesize[mpi_rank] != 0) { // for the second node
alloc_tensor(&input, Nodesize[1], C, H, W);
alloc_tensor(&output, Nodesize[1], K, OH, OW);
alloc_tensor(&filter, _K, _C, _R, _S);
MPI_Recv(input, Nodesize[1]*C*H*W, MPI_FLOAT,0,0,MPI_COMM_WORLD, &status);
MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
if(Nodesize[mpi_rank] < MAX_NUM_GPU) {
num_devices = Nodesize[mpi_rank];
}
}
offset = 0;
for(int i=0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(in_d[i], input + offset, Nsizei[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice));
CUDA_CALL( cudaMemcpy(fil_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice));
offset += Nsizei[i] * C * H * W;
}
for(int i=0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
for(int i=0; i < num_devices; i++) {
dim3 gridDim ( (OH+TS-1)/TS, (Nsizei[i]*K*OW + TS -1)/TS, 1);
dim3 blockDim(TS, TS, 1);
CUDA_CALL(cudaSetDevice(i));
conv_kernel<<<gridDim, blockDim>>>(in_d[i], out_d[i], fil_d[i], Nsizei[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride);
}
// DO NOT REMOVE: NEEDED FOR TIME MEASURE
for(int i=0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
// gather for the same node
offset = 0;
for(int i=0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(output + offset, out_d[i], Nsizei[i]*K*OH*OW *sizeof(float), cudaMemcpyDeviceToHost) );
offset += Nsizei[i]*K*OH*OW;
}
for(int i=0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
// gather for the different node
if(mpi_rank==0 && mpi_world_size == 2 && Nodesize[1] != 0) {
MPI_Recv(&output[Nodesize[0]*K*OH*OW], Nodesize[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
}
else if(mpi_rank==1 && Nodesize[1] != 0) {
MPI_Isend(output, Nodesize[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
/*
// if (mpi_rank == 0) {
//#pragma omp parallel for schedule(dynamic) num_threads(num_threads)
//#pragma omp parallel for schedule(dynamic)
//#pragma omp parallel for schedule(dynamic) num_threads(80)
#pragma omp parallel for schedule(dynamic) num_threads(80) collapse(3)
//#pragma omp parallel for schedule(dynamic) num_threads(80) collapse(2)
//for (int n = 0; n < N; ++n) {
for (int n = 0; n < Nodesize[mpi_rank]; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
} // for s
} // for r
} // for c
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
} // for ow
} // for oh
} // for k
} // for n
// }
if(mpi_rank==0 && mpi_world_size == 2) {
MPI_Recv(&output[Nodesize[0]*K*OH*OW], Nodesize[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
}
else if(mpi_world_size == 2) {
MPI_Isend(output, Nodesize[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
*/
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
// set initial value for the cuda and its kernels
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
// seperate the jobs for two nodes
if(mpi_world_size == 2 && _N > 4) Nodesize[1] = _N/2; // two mpi_rank
else Nodesize[1] = 0;
Nodesize[0] = N - Nodesize[1]; // allocate more jobs for the node0 (mpi_rank=0)
// set more Nodesize for mpi_rank=0
if(Nodesize[mpi_rank] < MAX_NUM_GPU) {
num_devices = Nodesize[mpi_rank];
for(int i=0; i < Nodesize[mpi_rank]; i++) Nsizei[i] = 1;
}
else {
num_devices = MAX_NUM_GPU;
int Nodesize_per_GPU = Nodesize[mpi_rank] / MAX_NUM_GPU;
int remainder= Nodesize[mpi_rank] % MAX_NUM_GPU;
for(int i=0; i < MAX_NUM_GPU; i++) {
Nsizei[i] = Nodesize_per_GPU;
if(i < remainder) Nsizei[i]++; // increase the more Nsizei for the last term
}
}
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&in_d[i], Nsizei[i]*C*H*W* sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], Nsizei[i]*K*OH*OW * sizeof(float)) );
CUDA_CALL( cudaMalloc(&fil_d[i], K*C*R*S* sizeof(float)) );
}
}
/*
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&in_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&fil_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
}
*/
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}