chundoong-lab-ta/SamsungDS22/submissions/final/gyehyung.kim/A/convolution.cpp

391 lines
15 KiB
C++

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include "util.h"
#include <immintrin.h>
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
int num_threads = 100;
void convolution1(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int size[2];
MPI_Request request;
MPI_Status status;
input = _input;
output = _output;
filter = _filter;
if (mpi_world_size == 2)
size[1] = _N / 2;
else
size[1] = 0;
size[0] = N - size[1];
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0 && mpi_world_size == 2) {
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
} else if (mpi_world_size == 2) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
for (int n = 0; n < size[mpi_rank]; ++n) {
//#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
}
if (mpi_rank == 0 && mpi_world_size == 2)
{
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
} else if(mpi_world_size == 2){
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
void convolution8(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int size[2];
MPI_Request request;
MPI_Status status;
input = _input;
output = _output;
filter = _filter;
if (mpi_world_size == 2)
size[1] = _N / 2;
else
size[1] = 0;
size[0] = N - size[1];
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0 && mpi_world_size == 2) {
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
} else if (mpi_world_size == 2) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
for (int n = 0; n < size[mpi_rank]; ++n) {
//#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; s=s+8) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * 8 * dilation;
int w1 = ow * stride - pad + (s *8 + 1) * dilation;
int w2 = ow * stride - pad + (s *8 + 2) * dilation;
int w3 = ow * stride - pad + (s *8 + 3) * dilation;
int w4 = ow * stride - pad + (s *8 + 4) * dilation;
int w5 = ow * stride - pad + (s *8 + 5) * dilation;
int w6 = ow * stride - pad + (s *8 + 6) * dilation;
int w7 = ow * stride - pad + (s *8 + 7) * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float i1 = input[n * C * H * W + c * H * W + h * W + w1];
float i2 = input[n * C * H * W + c * H * W + h * W + w2];
float i3 = input[n * C * H * W + c * H * W + h * W + w3];
float i4 = input[n * C * H * W + c * H * W + h * W + w4];
float i5 = input[n * C * H * W + c * H * W + h * W + w5];
float i6 = input[n * C * H * W + c * H * W + h * W + w6];
float i7 = input[n * C * H * W + c * H * W + h * W + w7];
float f = filter[k * C * R * S + c * R * S + r * S + s*8];
float f1 = filter[k * C * R * S + c * R * S + r * S + s*8+1];
float f2 = filter[k * C * R * S + c * R * S + r * S + s*8+2];
float f3 = filter[k * C * R * S + c * R * S + r * S + s*8+3];
float f4 = filter[k * C * R * S + c * R * S + r * S + s*8+4];
float f5 = filter[k * C * R * S + c * R * S + r * S + s*8+5];
float f6 = filter[k * C * R * S + c * R * S + r * S + s*8+6];
float f7 = filter[k * C * R * S + c * R * S + r * S + s*8+7];
o += i * f;
o += i1 * f1;
o += i2 * f2;
o += i3 * f3;
o += i4 * f4;
o += i5 * f5;
o += i6 * f6;
o += i7 * f7;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
}
if (mpi_rank == 0 && mpi_world_size == 2)
{
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
} else if(mpi_world_size == 2){
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
void convolutionsimd(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int size[2];
MPI_Request request;
MPI_Status status;
input = _input;
output = _output;
filter = _filter;
if (mpi_world_size == 2)
size[1] = _N / 2;
else
size[1] = 0;
size[0] = N - size[1];
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0 && mpi_world_size == 2) {
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
} else if (mpi_world_size == 2) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
#pragma omp parallel for num_threads(num_threads) collapse(3)
for (int n = 0; n < size[mpi_rank]; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
//for (int ow = 0; ow < OW; ++ow) {
for (int ow = 0; ow < OW/8; ow=ow+8) {
//float o = 0.f;
__m256 o = _mm256_set_ps(0.,0.,0.,0.,0.,0.,0.,0.);
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S/8; s=s+8) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
/*int w = ow * stride - pad + s * 4 * dilation;
int w1 = ow * stride - pad + (s *4 + 1) * dilation;
int w2 = ow * stride - pad + (s *4 + 2) * dilation;
int w3 = ow * stride - pad + (s *4 + 3) * dilation;*/
if (h < 0 || h >= H || w < 0 || w >= W) continue;
__m256 i = _mm256_load_ps(&input[n * C * H * W + c * H * W + h * W + w]);
/*float i = input[n * C * H * W + c * H * W + h * W + w];
float i1 = input[n * C * H * W + c * H * W + h * W + w1];
float i2 = input[n * C * H * W + c * H * W + h * W + w2];
float i3 = input[n * C * H * W + c * H * W + h * W + w3]; */
__m256 f = _mm256_load_ps(&filter[k * C * R * S + c * R * S + r * S + s]);
/*float f = filter[k * C * R * S + c * R * S + r * S + s*4];
float f1 = filter[k * C * R * S + c * R * S + r * S + s*4+1];
float f2 = filter[k * C * R * S + c * R * S + r * S + s*4+2];
float f3 = filter[k * C * R * S + c * R * S + r * S + s*4+3]; */
o += i * f;
}
}
}
//output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o[0];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+1] = o[1];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+2] = o[2];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+3] = o[3];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+4] = o[4];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+5] = o[5];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+6] = o[6];
output[n * K * OH * OW + k * OH * OW + oh * OW + ow+7] = o[7];
}
}
}
}
if (mpi_rank == 0 && mpi_world_size == 2)
{
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
} else if(mpi_world_size == 2){
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
void convolution4(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int size[2];
MPI_Request request;
MPI_Status status;
input = _input;
output = _output;
filter = _filter;
if (mpi_world_size == 2)
size[1] = _N / 2;
else
size[1] = 0;
size[0] = N - size[1];
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0 && mpi_world_size == 2) {
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
} else if (mpi_world_size == 2) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
//#pragma omp parallel for num_threads(num_threads) collapse(3)
for (int n = 0; n < size[mpi_rank]; ++n) {
//#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S/4; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * 4 * dilation;
int w1 = ow * stride - pad + (s *4 + 1) * dilation;
int w2 = ow * stride - pad + (s *4 + 2) * dilation;
int w3 = ow * stride - pad + (s *4 + 3) * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float i1 = input[n * C * H * W + c * H * W + h * W + w1];
float i2 = input[n * C * H * W + c * H * W + h * W + w2];
float i3 = input[n * C * H * W + c * H * W + h * W + w3];
float f = filter[k * C * R * S + c * R * S + r * S + s*4];
float f1 = filter[k * C * R * S + c * R * S + r * S + s*4+1];
float f2 = filter[k * C * R * S + c * R * S + r * S + s*4+2];
float f3 = filter[k * C * R * S + c * R * S + r * S + s*4+3];
o += i * f;
o += i1 * f1;
o += i2 * f2;
o += i3 * f3;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
}
if (mpi_rank == 0 && mpi_world_size == 2)
{
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
} else if(mpi_world_size == 2){
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
//if(_S % 8 == 0)
// convolution8(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
//convolutionsimd(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
if(_S % 4 == 0)
convolution4(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
else
convolution1(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}