233 lines
6.9 KiB
Plaintext
233 lines
6.9 KiB
Plaintext
#include "convolution.h"
|
|
#include "util.h"
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#define CUDA_CALL(f) \
|
|
{ \
|
|
cudaError_t err = (f); \
|
|
if (err != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
|
err, cudaGetErrorString(err)); \
|
|
exit(1); \
|
|
} \
|
|
}
|
|
|
|
#define MAX_NUM_GPU (4)
|
|
#define BLOCK_SIZE (1024)
|
|
|
|
int num_devices = 0;
|
|
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU], Nsize[MAX_NUM_GPU], Nslice;
|
|
// Array of device (GPU) pointers
|
|
static float *i_d[MAX_NUM_GPU];
|
|
static float *f_d[MAX_NUM_GPU];
|
|
static float *o_d[MAX_NUM_GPU];
|
|
|
|
static float *input, *output, *filter;
|
|
static int N, C, H, W;
|
|
static int K, R, S;
|
|
static int OH, OW;
|
|
static int pad;
|
|
static int dilation;
|
|
static int stride;
|
|
static int mpi_rank, mpi_world_size;
|
|
int sn, en, firstSize, modN;
|
|
|
|
__global__ void convOpt(
|
|
float *input, float *output, float *filter,
|
|
int N, int C, int H, int W,
|
|
int K, int R, int S,
|
|
int pad, int dilation, int stride) {
|
|
int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
|
int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
|
|
|
int now = blockDim.x * blockIdx.x + threadIdx.x;
|
|
int k = blockIdx.y;
|
|
int oh = blockIdx.z;
|
|
int n = now / OW;
|
|
int ow = now % OW;
|
|
if (oh >= OH || ow >= OW || k >= K || n >= N) return;
|
|
//for (int n = 0; n < N; ++n)
|
|
{
|
|
//for (int k = 0; k < K; ++k)
|
|
{
|
|
float o = 0.0f;
|
|
for (int c = 0; c < C; ++c) {
|
|
for (int r = 0; r < R; ++r) {
|
|
for (int s = 0; s < S; ++s) {
|
|
int h = oh * stride - pad + r * dilation;
|
|
int w = ow * stride - pad + s * dilation;
|
|
if (h < 0 || h >= H || w < 0 || w >= W) continue;
|
|
float i = input[n*C*H*W + c*H*W + h*W + w];
|
|
float f = filter[k*C*R*S + c*R*S + r*S + s];
|
|
o += i * f;
|
|
}
|
|
}
|
|
}
|
|
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
|
|
}
|
|
}
|
|
}
|
|
|
|
void convolution(
|
|
float *_input, float *_output, float *_filter,
|
|
int _N, int _C, int _H, int _W,
|
|
int _K, int _R, int _S,
|
|
int _pad, int _dilation, int _stride) {
|
|
input = _input;
|
|
output = _output;
|
|
filter = _filter;
|
|
MPI_Request request[2];
|
|
MPI_Status status[2];
|
|
|
|
if (N > 1)
|
|
{
|
|
if (mpi_rank == 0)
|
|
{
|
|
int snTmp = firstSize;
|
|
int enTmp = N;
|
|
MPI_Isend(input+snTmp*C*H*W, (enTmp-snTmp)*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[0]);
|
|
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[1]);
|
|
}
|
|
else
|
|
{
|
|
if (modN > 0)
|
|
{
|
|
alloc_tensor(&input, modN, C, H, W);
|
|
alloc_tensor(&output, modN, K, OH, OW);
|
|
alloc_tensor(&filter, K, C, R, S);
|
|
}
|
|
MPI_Irecv(input, modN*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[0]);
|
|
MPI_Irecv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[1]);
|
|
}
|
|
MPI_Waitall(2,request, status);
|
|
}
|
|
if (modN > 0) {
|
|
// Allocate device memory for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaMalloc(&i_d[i], Nsize[i]*C*H*W * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&f_d[i], K*C*R*S * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&o_d[i], Nsize[i]*K*OH*OW * sizeof(float)) );
|
|
}
|
|
// Upload A and B matrix to every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaMemcpy(i_d[i], input + Nbegin[i]*C*H*W,
|
|
Nsize[i]*C*H*W * sizeof(float),
|
|
cudaMemcpyHostToDevice) );
|
|
CUDA_CALL( cudaMemcpy(f_d[i], filter,
|
|
K*C*R*S * sizeof(float),
|
|
cudaMemcpyHostToDevice) );
|
|
}
|
|
|
|
// Launch kernel on every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
dim3 blockDim(BLOCK_SIZE, 1, 1);
|
|
dim3 gridDim((Nsize[i]*OW+BLOCK_SIZE-1)/BLOCK_SIZE, K, OH);
|
|
convOpt<<<gridDim, blockDim>>>(i_d[i], o_d[i], f_d[i], Nsize[i],
|
|
C, H, W, K, R, S,
|
|
pad, dilation, stride);
|
|
}
|
|
|
|
// Download output matrix from GPUs
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaMemcpy(output + Nbegin[i]*K*OH*OW, o_d[i],
|
|
Nsize[i]*K*OH*OW * sizeof(float),
|
|
cudaMemcpyDeviceToHost) );
|
|
}
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
if (N > 1)
|
|
{
|
|
if (mpi_rank == 0)
|
|
{
|
|
int snTmp = firstSize;
|
|
int enTmp = N;
|
|
MPI_Irecv(output+snTmp*K*OH*OW, (enTmp-snTmp)*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[0]);
|
|
}
|
|
else
|
|
{
|
|
MPI_Isend(output, modN*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[0]);
|
|
}
|
|
MPI_Wait(&request[0], &status[0]);
|
|
}
|
|
}
|
|
|
|
void convolution_init(
|
|
int _N, int _C, int _H, int _W,
|
|
int _K, int _R, int _S,
|
|
int _pad, int _dilation, int _stride) {
|
|
N = _N; C = _C; H = _H; W = _W;
|
|
K = _K; R = _R; S = _S;
|
|
pad = _pad;
|
|
dilation = _dilation;
|
|
stride = _stride;
|
|
|
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
|
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
|
firstSize = (N + 1) / mpi_world_size;
|
|
if (mpi_rank == 0)
|
|
{
|
|
sn = 0;
|
|
en = firstSize;
|
|
modN = firstSize;
|
|
}
|
|
else
|
|
{
|
|
sn = firstSize;
|
|
en = N;
|
|
modN = N - firstSize;
|
|
}
|
|
|
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
|
//printf("Using %d devices\n", num_devices);
|
|
Nslice = (modN + num_devices - 1) / num_devices;
|
|
for (int i = 0; i < num_devices; i++) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
|
// Try printing more detailed information here
|
|
//printf("[GPU %d] %s\n", i, prop.name);
|
|
}
|
|
|
|
if (num_devices <= 0) {
|
|
//printf("No CUDA device found. Aborting\n");
|
|
exit(1);
|
|
}
|
|
// Setup problem size for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
Nbegin[i] = Nslice * i;
|
|
if (Nbegin[i] + Nslice < modN)
|
|
Nend[i] = Nbegin[i] + Nslice;
|
|
else if (Nbegin[i] < modN)
|
|
Nend[i] = modN;
|
|
else
|
|
Nbegin[i]=0, Nend[i] = 0;
|
|
Nsize[i] = Nend[i] - Nbegin[i];
|
|
}
|
|
}
|
|
|
|
void convolution_final(
|
|
int _N, int _C, int _H, int _W,
|
|
int _K, int _R, int _S,
|
|
int _pad, int _dilation, int _stride) {
|
|
if (N > 1 && mpi_rank != 0)
|
|
{
|
|
free(input);
|
|
free(output);
|
|
free(filter);
|
|
}
|
|
}
|