chundoong-lab-ta/SamsungDS22/submissions/HW6/seongje.jang/mat_mul.cu

162 lines
4.7 KiB
Plaintext

#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define TS (32)
#define WPT (16)
#define RTS (2)
#define MAX_NUM_GPU 4
int num_devices = 0;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K, int numTiles) {
const int row = threadIdx.x;
const int col = threadIdx.y;
const int globalRow = TS * blockIdx.x + threadIdx.x;
const int globalCol = TS * blockIdx.y + threadIdx.y;
__shared__ float Asub[TS][TS];
__shared__ float Bsub[TS][TS];
float acc[WPT];
for(int w=0; w<WPT; w++) {
acc[w] = 0.0f;
}
for(int t=0; t<numTiles; t++) {
for(int w=0; w<WPT; w++) {
const int tiledRow = TS*t + row;
const int tiledCol = TS*t + col;
if((globalRow + w*RTS) < M && tiledCol < K)
Asub[w*RTS + row][col] = A[(globalRow + w*RTS)*K + tiledCol];
else
Asub[w*RTS + row][col] = 0.0f;
if((tiledRow + w*RTS) < K && globalCol < N)
Bsub[row + w*RTS][col] = B[(tiledRow + w*RTS)*N + globalCol];
else
Bsub[row + w*RTS][col] = 0.0f;
}
__syncthreads();
for(int k=0; k<TS; k++) {
for(int w=0; w<WPT; w++) {
acc[w] += Asub[row + w*RTS][k] * Bsub[k][col];
}
}
__syncthreads();
}
for(int w=0; w<WPT; w++) {
if((globalRow + w*RTS) < M && globalCol < N)
C[(globalRow + w*RTS)*N + globalCol] = acc[w];
}
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int rows[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
int M_XL = (M+TS-1)/TS*TS;
int N_XL = (N+TS-1)/TS*TS;
int K_XL = (K+TS-1)/TS*TS;
int numTiles = K_XL/TS;
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
int rows_XL = (rows[i]+TS-1)/TS*TS;
dim3 blockDim(RTS, TS, 1);
dim3 gridDim(rows_XL/TS, N_XL/TS, 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], rows[i], N, K, numTiles);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
rows[i] = i==0? M/num_devices + M%num_devices : M/num_devices;
}
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (rows[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (rows[i]) * N * sizeof(float)) );
}
// Upload A and B matrix to every GPU
int offset = 0;
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + offset * K,
(rows[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
offset += rows[i];
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
int offset = 0;
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + offset * N, c_d[i],
(rows[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
offset += rows[i];
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}